Better abstractions for timed automata

B. Srivathsan¹

Joint work with F. Herbreteau¹, D. Kini² and I. Walukiewicz¹

LaBRI, Université Bordeaux 1

IIT Bombay / UIUC

LSV-ENS Cachan

February 2012

Timed Automata [AD94]

Run: finite sequence of transitions,

$$(s_0, \overbrace{0}^{x}, \overbrace{0}^{y}) \xrightarrow{0.4, a} (s_1, 0.4, 0) \xrightarrow{0.5, c} (s_3, 0.9, 0.5)$$

• A run is **accepting** if it ends in a green state.

The problem we are interested in ...

Given a TA, does there exist an accepting run?

The problem we are interested in ...

Given a TA, does there exist an accepting run?

Theorem [AD94, CY92]

This problem is **PSPACE-complete**

Better abstractions for timed automata - 3/34

First solution to this problem

Key idea: Partition the space of valuations into a **finite** number of **regions**

- Region: set of valuations satisfying the same guards w.r.t. time
- Finiteness: Parametrized by maximal constant

Sound and complete [AD94]

Region graph preserves state reachability

First solution to this problem

Key idea: Partition the space of valuations into a **finite** number of **regions**

 Region: set of valuations satisfying the same guards w.r.t. time

 Finiteness: Parametrized by maximal constant

 $\mathcal{O}(|X|!.M^{|X|})$ many regions!

Sound and complete [AD94]

Region graph preserves state reachability

A more efficient solution...

Key idea: Maintain all valuations reachable along a path

Zones and zone graph

- Zone: set of valuations defined by conjunctions of constraints:
 - ► *x* ~ *c*

•
$$x - y \sim c$$

• e.g.
$$(x - y \ge 1) \land y < 2$$

Representation: by DBM

Sound and complete [DT98]

Zone graph preserves state reachability

But the zone graph could be infinite ...

Use finite abstractions

Key idea: Abstract each zone in a sound manner

Number of abstracted zones is finite

Use finite abstractions

Key idea: Abstract each zone in a sound manner

- Number of abstracted zones is finite
- ► Coarser abstraction → smaller abstract zone graph

Abstractions in literature [Bou04, BBLP06]

Sound and complete

All the above abstractions preserve state reachability

Abstractions in literature [Bou04, BBLP06]

Sound and complete

All the above abstractions preserve state reachability

But for implementation abstracted zone should be a zone

Abstractions in literature [Bou04, BBLP06]

Only convex abstractions in implementations!

Efficient use of the **non-convex** $\mathfrak{a}_{\preccurlyeq_{LU}}$ abstraction!

Standard algorithm: covering tree

Using $\mathfrak{a}_{\prec_{LU}}$ for reachability

$\mathfrak{a}_{\prec_{LU}}(Z)$ cannot be efficiently stored

Using $\mathfrak{a}_{\preccurlyeq_{LU}}$ for reachability

Do not store abstracted zones!

Using $\mathfrak{a}_{\preccurlyeq_{LU}}$ for reachability

Use $\mathfrak{a}_{\preccurlyeq \mu}$ for termination!

Missing piece...

Efficient $Z \subseteq \mathfrak{a}_{\preccurlyeq_{LU}}(Z')$

Better abstractions for timed automata - 12/34

▶ $\mathbf{v} \preccurlyeq_{\mathsf{LU}} \mathbf{v}'$: *v* is simulated by *v'*

•
$$\mathfrak{a}_{\preccurlyeq_{LU}}(Z) := \{ \mathbf{v} \mid \exists \mathbf{v}' \in Z \text{ s.t. } \mathbf{v} \preccurlyeq_{\mathsf{LU}} \mathbf{v}' \}$$

▶ $\mathbf{v} \preccurlyeq_{\mathsf{LU}} \mathbf{v}'$: *v* is simulated by *v'* when for all *x* ∈ *X*

$$\bullet \ \mathfrak{a}_{\preccurlyeq_{LU}}(Z) := \{ v \mid \exists v' \in Z \text{ s.t. } v \preccurlyeq_{\mathsf{LU}} v' \}$$

▶ $\mathbf{v} \preccurlyeq_{\mathsf{LU}} \mathbf{v}'$: *v* is simulated by *v'* when for all *x* ∈ *X*

• v(x) > v'(x)

•
$$\mathfrak{a}_{\preccurlyeq_{LU}}(Z) := \{ \mathbf{v} \mid \exists \mathbf{v}' \in Z \text{ s.t. } \mathbf{v} \preccurlyeq_{\mathsf{LU}} \mathbf{v}' \}$$

▶ $\mathbf{v} \preccurlyeq_{\mathsf{LU}} \mathbf{v}'$: *v* is simulated by *v'* when for all *x* ∈ *X*

• v(x) > v'(x)

•
$$\mathfrak{a}_{\preccurlyeq_{LU}}(Z) := \{ \mathbf{v} \mid \exists \mathbf{v}' \in Z \text{ s.t. } \mathbf{v} \preccurlyeq_{\mathsf{LU}} \mathbf{v}' \}$$

▶ $\mathbf{v} \preccurlyeq_{\mathsf{LU}} \mathbf{v}'$: *v* is simulated by *v'* when for all *x* ∈ *X*

►
$$v(x) > v'(x) \Rightarrow v'(x) > L_x$$
, and

$$\bullet \ \mathfrak{a}_{\preccurlyeq_{LU}}(Z) := \{ \mathbf{v} \mid \exists \mathbf{v}' \in Z \text{ s.t. } \mathbf{v} \preccurlyeq_{\mathsf{LU}} \mathbf{v}' \}$$

▶ $\mathbf{v} \preccurlyeq_{\mathsf{LU}} \mathbf{v}'$: *v* is simulated by *v'* when for all *x* ∈ *X*

▶ $v(x) > v'(x) \Rightarrow v'(x) > L_x$, and ▶ v(x) < v'(x)

$$\blacktriangleright \ \mathfrak{a}_{\preccurlyeq_{LU}}(Z) := \{ v \mid \exists v' \in Z \text{ s.t. } v \preccurlyeq_{\mathsf{LU}} v' \}$$

▶ $\mathbf{v} \preccurlyeq_{\mathsf{LU}} \mathbf{v}'$: *v* is simulated by *v'* when for all *x* ∈ *X*

▶ $v(x) > v'(x) \Rightarrow v'(x) > L_x$, and ▶ v(x) < v'(x)

$$\bullet \ \mathfrak{a}_{\preccurlyeq_{LU}}(Z) := \{ v \mid \exists v' \in Z \text{ s.t. } v \preccurlyeq_{\mathsf{LU}} v' \}$$

▶ $\mathbf{v} \preccurlyeq_{\mathsf{LU}} \mathbf{v}'$: *v* is simulated by *v'* when for all *x* ∈ *X*

▶ $v(x) > v'(x) \Rightarrow v'(x) > L_x$, and ▶ $v(x) < v'(x) \Rightarrow v(x) > U_x$

$$\bullet \ \mathfrak{a}_{\preccurlyeq_{LU}}(Z) := \{ \mathbf{v} \mid \exists \mathbf{v}' \in Z \text{ s.t. } \mathbf{v} \preccurlyeq_{\mathsf{LU}} \mathbf{v}' \}$$

Example

▶ $\mathbf{v} \preccurlyeq_{\mathsf{LU}} \mathbf{v}'$: when for all $x \in X$ ▶ $v(x) > v'(x) \Rightarrow v'(x) > L_x$ and ▶ $v(x) < v'(x) \Rightarrow v(x) > U_x$

 $\blacktriangleright \quad \mathfrak{a}_{\preccurlyeq_{LU}}(Z): \ \{ \mathbf{v} \mid \exists \mathbf{v}' \in Z \text{ s.t. } \mathbf{v} \preccurlyeq_{\mathsf{LU}} \mathbf{v}' \}$

Coming next...

$Z \subseteq \mathfrak{a}_{\preccurlyeq_{LU}}(Z')$

Better abstractions for timed automata - 15/34

Step 1: Focus on regions

Union of regions

Every region R that intersects $\mathfrak{a}_{\prec_{LU}}(Z')$ is included in $\mathfrak{a}_{\prec_{LU}}(Z')$.

Step 1: Focus on regions

Union of regions

Every region R that intersects $\mathfrak{a}_{\prec_{LU}}(Z')$ is included in $\mathfrak{a}_{\prec_{LU}}(Z')$.

 $Z \not\subseteq \mathfrak{a}_{\prec_{III}}(Z') \Leftrightarrow \exists R. R \text{ intersects } Z, R \text{ not included in } \mathfrak{a}_{\prec_{III}}(Z')$

- ▶ $\mathbf{v} \preccurlyeq_{\mathsf{LU}} \mathbf{v}'$: when for all $x \in X$
 - $v(x) > v'(x) \Rightarrow v'(x) > L_x$ and
 - $v(x) < v'(x) \Rightarrow v(x) > U_x$

- ▶ $\mathbf{v} \preccurlyeq_{\mathsf{LU}} \mathbf{v}'$: when for all $x \in X$
 - $v(x) > v'(x) \Rightarrow v'(x) > L_x$ and
 - $v(x) < v'(x) \Rightarrow v(x) > U_x \checkmark$

- ▶ $\mathbf{v} \preccurlyeq_{\mathsf{LU}} \mathbf{v}'$: when for all $x \in X$
 - $v(x) > v'(x) \Rightarrow v'(x) > L_x \checkmark$ and
 - $v(x) < v'(x) \Rightarrow v(x) > U_x$

- ▶ $\mathbf{v} \preccurlyeq_{\mathsf{LU}} \mathbf{v}'$: when for all $x \in X$
 - $v(x) > v'(x) \Rightarrow v'(x) > L_x$ and
 - $v(x) < v'(x) \Rightarrow v(x) > U_x$

Inclusion to intersection

$$\mathsf{R} \not\subseteq \mathfrak{a}_{\preccurlyeq_{\mathsf{LU}}}(\mathsf{Z}') \quad \Leftrightarrow \quad \mathfrak{a}_{\preccurlyeq_{\mathsf{LU}}}^{-1}(\mathsf{R}) \cap \mathsf{Z}' \text{ is empty}$$

Inclusion to intersection

$$\mathsf{R} \not\subseteq \mathfrak{a}_{\preccurlyeq_{\mathsf{LU}}}(\mathsf{Z}') \quad \Leftrightarrow \quad \mathfrak{a}_{\preccurlyeq_{\mathsf{LU}}}^{-1}(\mathsf{R}) \cap \mathsf{Z}' \text{ is empty}$$

For every region *R*, the set $\mathfrak{a}_{\leq u}^{-1}(R)$ is a **zone**!

Inclusion to intersection

$$\mathsf{R} \not\subseteq \mathfrak{a}_{\preccurlyeq_{\mathsf{LU}}}(\mathsf{Z}') \quad \Leftrightarrow \quad \mathfrak{a}_{\preccurlyeq_{\mathsf{LU}}}^{-1}(\mathsf{R}) \cap \mathsf{Z}' \text{ is empty}$$

 $Z \not\subseteq \mathfrak{a}_{\preccurlyeq \iota \upsilon}(Z') \Leftrightarrow \exists R. R \text{ intersects } Z, \mathfrak{a}_{\preccurlyeq \iota \upsilon}^{-1}(R) \text{ does not intersect } Z'$

Reduction to two clocks

 $\mathfrak{a}_{\prec u}^{-1}(R) \cap Z'$ is empty iff there **exist 2 clocks** *x*, *y* s.t.

 $\mathfrak{a}_{\prec_{LU}}^{-1}(\mathbf{Proj}_{xy}(R)) \cap \mathbf{Proj}_{xy}(Z')$ is empty

Reduction to two clocks

 $\mathfrak{a}_{\prec u}^{-1}(R) \cap Z'$ is empty iff there **exist 2 clocks** x, y s.t.

 $\mathfrak{a}_{\prec_{III}}^{-1}(\mathbf{Proj}_{xy}(R)) \cap \mathbf{Proj}_{xy}(Z')$ is empty

 $\operatorname{Proj}_{XV}(R)$ is a region, $\operatorname{Proj}_{XV}(Z')$ is a zone

Reduction to two clocks

 $\mathfrak{a}_{\prec u}^{-1}(R) \cap Z'$ is empty iff there **exist 2 clocks** x, y s.t.

 $\mathfrak{a}_{\prec_{III}}^{-1}(\mathbf{Proj}_{xy}(R)) \cap \mathbf{Proj}_{xy}(Z')$ is empty

 $\operatorname{Proj}_{XV}(R)$ is a region, $\operatorname{Proj}_{XV}(Z')$ is a zone

 $\mathfrak{a}_{\preccurlyeq U}^{-1}(\operatorname{Proj}_{xy}(R)) \cap \operatorname{Proj}_{xy}(Z') \text{ is empty } \Leftrightarrow \operatorname{Proj}_{xy}(R) \not\subseteq \mathfrak{a}_{\preccurlyeq U}(\operatorname{Proj}_{xy}(Z'))$

Reduction to two clocks

 $\mathfrak{a}_{\prec_{LU}}^{-1}(R) \cap Z'$ is empty iff there **exist 2 clocks** x, y s.t.

 $\mathfrak{a}_{\prec_{LU}}^{-1}(\mathbf{Proj}_{xy}(R)) \cap \mathbf{Proj}_{xy}(Z')$ is empty

 $\operatorname{Proj}_{XV}(R)$ is a region, $\operatorname{Proj}_{XV}(Z')$ is a zone

 $\mathfrak{a}_{\preccurlyeq U}^{-1}(\operatorname{Proj}_{xy}(R)) \cap \operatorname{Proj}_{xy}(Z') \text{ is empty } \Leftrightarrow \operatorname{Proj}_{xy}(R) \not\subseteq \mathfrak{a}_{\preccurlyeq U}(\operatorname{Proj}_{xy}(Z'))$

 $Z \not\subseteq \mathfrak{a}_{\preccurlyeq \mu}(Z') \Leftrightarrow \exists R, x, y. R \text{ intersects } Z, \operatorname{Proj}_{xy}(R) \not\subseteq \mathfrak{a}_{\preccurlyeq \mu}(\operatorname{Proj}_{xy}(Z'))$

Theorem

 $Z \not\subseteq \mathfrak{a}_{\prec_{LU}}(Z')$ if and only if there **exist 2 clocks** x, y s.t.

 $\operatorname{Proj}_{xy}(Z) \not\subseteq \mathfrak{a}_{\prec_{LU}}(\operatorname{Proj}_{xy}(Z'))$

Theorem $Z \mathcal{J} = (Z')$ if and

 $Z \not\subseteq \mathfrak{a}_{\preccurlyeq_{LU}}(Z')$ if and only if there **exist 2 clocks** x, y s.t.

 $\operatorname{Proj}_{xy}(Z) \not\subseteq \mathfrak{a}_{\preccurlyeq_{LU}}(\operatorname{Proj}_{xy}(Z'))$

Complexity: $\mathcal{O}(|X|^2)$, where X is the set of clocks

Better abstractions for timed automata - 19/34

Theorem

 $Z \not\subseteq \mathfrak{a}_{\preccurlyeq_{LU}}(Z')$ if and only if there **exist 2 clocks** x, y s.t.

 $\operatorname{Proj}_{xy}(Z) \not\subseteq \mathfrak{a}_{\preccurlyeq_{LU}}(\operatorname{Proj}_{xy}(Z'))$

Same complexity as $Z \subseteq Z'$!

Better abstractions for timed automata - 19/34

Theorem

 $Z \not\subseteq \mathfrak{a}_{\preccurlyeq_{LU}}(Z')$ if and only if there **exist 2 clocks** x, y s.t.

 $\operatorname{Proj}_{xy}(Z) \not\subseteq \mathfrak{a}_{\preccurlyeq_{LU}}(\operatorname{Proj}_{xy}(Z'))$

Slightly modified comparison works!

Better abstractions for timed automata - 19/34

So what do we have now...

Efficient algorithm for $Z \subseteq \mathfrak{a}_{\prec \mu}(Z')$

So what do we have now...

Coming next: prune the LU bounds!

LU-bounds

Naive:
$$L_x = U_x = 10^6$$
, $L_y = U_y = 10^6$
Size of graph $\sim 10^6$

Static analysis: bounds for every q [BBFL03]

Naive: $L_x = U_x = 10^6$, $L_y = U_y = 10^6$ Size of graph < 10

Static analysis: bounds for every q [BBFL03]

Naive: $L_x = U_x = 10^6$, $L_y = U_y = 10^6$ Size of graph < 10

But this is not enough!

Need to look at semantics...

Static analysis: 10⁶

More than 10^6 zones at q_0 not necessary!

LU bounds for every (q, Z) in ZG(A)

$$\begin{array}{ll} L(x) = & -\infty \\ U(x) = & -\infty \end{array}$$

$$L(x) = -\infty$$

$$U(x) = -\infty$$

$$(q, Z, LU)$$

*

$$L(x) = -\infty$$

$$U(x) = 3$$

$$(q, Z, LU)$$

$$x \le 3$$

 $\begin{array}{rcl} L(x) = & -\infty \\ U(x) = & 3 \end{array}$

$$(q, Z, LU)$$

 $x \leq 3$

Invariants on the bounds

- ▶ Non tentative nodes: $LU = max\{LU_{succ}\}$ (modulo resets)
- Tentative nodes: $LU = LU_{covering}$

Invariants on the bounds

▶ Non tentative nodes: $LU = max\{LU_{succ}\}$ (modulo resets)

• Tentative nodes: $LU = LU_{covering}$

Theorem (Correctness)

An accepting state is reachable in ZG(A) iff the algorithm reaches a node with an accepting state and a non-empty zone.

Overall algorithm

- Compute $ZG(\mathcal{A})$: $Z \subseteq \mathfrak{a}_{\prec_{LU}}(Z')$ for termination
- LU-bounds calculated on-the-fly

A bonus

- ▶ LU-automata: automata with guards determined by *L* and *U*
- > Z: an arbitrary reachable zone in some LU-automaton

A bonus

- ▶ LU-automata: automata with guards **determined by** *L* and *U*
- Z: an arbitrary **reachable zone** in some LU-automaton

Every **sound** and **complete** abstraction \mathfrak{b} satisfies $\mathfrak{b}(Z) \subseteq \mathfrak{a}_{\preccurlyeq_{LU}}(Z)$

Theorem

In the context of **reachability**, the $\mathfrak{a}_{\preccurlyeq_{LU}}$ abstraction is the **biggest** abstraction that is sound and complete for all LU-automata.

Benchmarks

Model	Our alg	orithm	UPPAAL	's algorithm	UPPAAL	4.1.3 (-n4 -C -o1)
	nodes	S.	nodes	S.	nodes	S.
CSMA/CD7	5046	0.39	5923	0.30	-	T.O.
CSMA/CD8	16609	0.75	19017	1.16	-	T.O.
CSMA/CD9	54467	9.40	60783	4.53		T.O.
FDDI10	459	0.04	525	0.05	12049	2.43
FDDI20	1719	0.41	2045	0.82	-	T.O.
FDDI30	3779	1.70	4565	3.90		T.O.
Fischer7	7737	0.40	18353	0.48	18374	0.35
Fischer8	25080	1.50	85409	2.31	85438	1.53
Fischer9	81035	5.70	397989	12.05	398685	8.95
Fischer10	-	T.O.	-	Т.О.	1827009	53.44

Extra⁺_{LU} and static analysis bounds in UPPAAL

 $\blacktriangleright \ \mathfrak{a}_{\preccurlyeq_{\mathit{LU}}}$ and otf bounds in our algorithm

Experiments I

\mathcal{A}_1	nodes	s.
Our algorithm	7	0.0
UPPAAL's algorithm	2003	0.60
UPPAAL 4.1.3	2003	0.01

Experiments II

\mathcal{A}_2	nodes	s.
Our algorithm	2	0.0
UPPAAL's algorithm	10003	0.07
UPPAAL 4.1.3	10003	0.07

Experiments II

\mathcal{A}_2	nodes	s.
Our algorithm	2	0.0
UPPAAL's algorithm	10003	0.07
UPPAAL 4.1.3	10003	0.07

Occurs in CSMA/CD!

Better abstractions for timed automata - 30/34

Experiments III

\mathcal{A}_3	nodes	s.
Our algorithm	3	0.0
UPPAAL's algorithm	10004	0.37
UPPAAL 4.1.3	10004	0.32

Experiments III

\mathcal{A}_3	nodes	s.
Our algorithm	3	0.0
UPPAAL's algorithm	10004	0.37
UPPAAL 4.1.3	10004	0.32

Occurs in Fischer!

Better abstractions for timed automata - 31/34

Experiments IV

Experiments IV

Occurs in FDDI!

Conclusions & Perspectives

- Efficient implementation of a non-convex approximation that is optimal
- On-the-fly learning of bounds that is better than the current static analysis

- Propagating more than constants
- Automata with **diagonal** constraints

References

R. Alur and D.L. Dill.

A theory of timed automata. Theoretical Computer Science, 126(2):183–235, 1994.

G. Behrmann, P. Bouyer, E. Fleury, and K. G. Larsen. Static guard analysis in timed automata verification.

In TACAS'03, volume 2619 of LNCS, pages 254-270. Springer, 2003.

G. Behrmann, P. Bouyer, K. G. Larsen, and R. Pelanek. Lower and upper bounds in zone-based abstractions of timed automata. Int. Journal on Software Tools for Technology Transfer, 8(3):204–215, 2006.

P. Bouyer.

Forward analysis of updatable timed automata. Form. Methods in Syst. Des., 24(3):281–320, 2004.

C. Courcoubetis and M. Yannakakis.

Minimum and maximum delay problems in real-time systems. Form. Methods Syst. Des., 1(4):385-415, 1992.

C. Daws and S. Tripakis.

Model checking of real-time reachability properties using abstractions. In *TACAS'98*, volume 1384 of *LNCS*, pages 313–329. Springer, 1998.